Logarytmy - kontynuacja

Matura rozszerzona w zakresie logarytmów nie wymaga tak naprawdę więcej niż dwóch dodatkowych rzeczy w odniesieniu do matury podstawowej.

Pierwszą z nich jest wyłączenie przed logarytm wykładnika. Z poprzedniego tekstu o logarytmach, wiecie już, że $$log_{a} b^c = c×log_{a} b$$

Co jednak, jeśli mamy sytuację $$log_{(a^b)} c$$.
Okazuje się, że coś takiego jest równe po prostu $${1}/{b} log_{a} c$$.

Dlaczego?
Dowód jest całkiem prosty:

Najpierw korzystamy z własności, że $$log_{a} b = {1}/{ {log_{b} } a$$ i otrzymujemy $$log_{(a^b)} c = {1}/{log_{c} } (a^b)$$. Później wyłączamy wykładnik przed logarytm i znowu odwracamy ułamek, w efekcie otrzymując faktycznie $${1}/{b} log_{a} c$$.

Składając to z poprzednim wzorem w ogólności otrzymujemy:
$$log_{(a^b)} c^d = {d}/{b} log_{a} c$$

(Łatwo zapamiętać: górny wykładnik wchodzi na górę ułamka, dolny - na dół).

Przykłady:

$${log_{2} }^4 3^3 = 3/4 log_{2} 3$$
$$log_{8} 32 = {log_{2} }^3 2^5 = 5/3 log_{2} 2 = 5/3$$


Drugi nowy wzór jest nieco bardziej skomplikowany i służy do zamiany podstawy logarytmu. Możemy użyć go do zamiany niewygodnej dla nas podstawy na taką, którą łatwiej operować: w szczególnośi możemy na przykład zamienić każdy logarym na logarytm dziesiętny lub naturalny. Wygląda on tak:

$$log_{a} b = { log_{c} b} / {log_{c} a}$$

Jego dowód:
$$ log_{a} b = {log_{c} b}/{ log_{c} a}$$
$$log_{a} b ×log_{c} a= log_{c} b$$

Korzystamy ze wzoru na włączenie potęgi:

$$log_{c} a^{log_{a} b} = log_{c} b$$

Oczywiście $$a^{log_{a} b}$$ jest równe b - podnosimy a do tej potęgi, do jakiej należy podnieść a, żeby otrzymać b) i w efekcie dostajemy:

$$log_{c} b = log_{c} b$$

Czyli wzór rzeczywiście działa.

Widać z niego, że dowolne dwa logarytmy o ustalonych podstawach: na przykład $$log_{2} x$$ i $$log_{100} x$$ różnią się jedynie o pomnożenie przez stałą $${1}/{log_{2} 1000}$$.


Ćwiczenie 1. Uprość wyrażenie:

a) $$log_{2} 3^10$$

Wyłączamy po prostu przed logarytm wykładnik otrzymując $$10 log_{2} 3$$

b) $$log_{2^9} 4^9$$

Zamieniając $$4$$ na $$2^2$$ dostajemy:
$$log_{2^9} (2^2)^9 = log_{2^9} (2^9)^2$$, czyli tak naprawdę $$log_a a^2$$ - co z definicji jest równe $$2$$ (do jakiej potęgi należy podnieść $$a$$, aby otrzymać $$a^2$$?).

c) $$log_{5} 1000$$

Rozkładając $1000$ na czynniki pierwsze dostajemy:
$$log_{5} 1000 = log_{5} 5^3×2^3$$

Teraz możemy podzielić logarytm na dwie części zamieniając mnożenie na dodawanie:

$$log_{5} 5^3×2^3 = log_{5} 5^3 + log_{5} 2^3 = 3 + 3log_{5} 2$$.



Ćwiczenie 2. Zamień podstawę logarytmu $$log_{5} 3600$$ na 10 i uprość.
 

Tak jak w poprzednim zadaniu rozkładamy $$3600$$ na czynniki - tyle, że tym razem interesuje nas ilość 10 mieszczących się w argumencie.

$$log_{5} 3600 = log_{5} 10^2 × 2^2×3^2$$

Teraz możemy zamieniać podstawy logarytmu:

$$log_5 3600 = {log_10 3600}/{log_10 5} = {log_10 10^2 × 2^2×3^2}/{log_10 5} = {2(2log_10 2 + log_10 3 + log_10 5)}/{log_10 5} =$$
$$= 2 + {4log_10 2}/{log_10 5} + {2log_10 3}/{log_10 5}$$

Komentarze